Acta Crystallographica Section E

Structure Reports
 Online

Hexaaquacobalt(II) bis(6-hydroxypyridine-3-carboxylate)

ISSN 1600-5368

Xue-Li Zhang ${ }^{\text {a }}$ and Seik Weng Ng^{b} *

${ }^{\mathrm{a}}$ Normal College, Shenzhen University, Shenzhen 518060, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{o}-\mathrm{O})=0.004 \AA$
Disorder in main residue
R factor $=0.054$
$w R$ factor $=0.159$
Data-to-parameter ratio $=8.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)_{2}$, the $\mathrm{Co}^{\text {II }}$ atom lies on a special position of $2 / m$ site symmetry in an octahedron made up of water molecules. The anions show orientational disorder over mirror planes and are linked together by a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a dianion. The complex cations and dianions are connected through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a three-dimensional network.

Comment

The title compound, (I), is isostructural with the $\mathrm{Zn}^{\mathrm{II}}$ (Zhang et al., 2005) and $\mathrm{Ni}^{\mathrm{II}}$ analogues (Zhang \& $\mathrm{Ng}, 2005$).

(I)

The crystal structure of (I) consists of octahedral cations and hydrogen-bonded dianions (Fig. 1). Atom Co1 lies on a position of $2 / m$ site symmetry and atom $\mathrm{O} 2 w$ also lies on the mirror plane, which bisects the $\mathrm{O} 1 w-\mathrm{Co} 1-\mathrm{O} 1 w^{\mathrm{iii}}$ bond angle

A plot of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) $1-x, y, 1-z$; (ii) $1-x, 1-y, 1-z$; (iii) $x, 1-y, z$; (iv) $\frac{5}{2}-x, \frac{3}{2}-y, 2-z$.]

Received 3 May 2005 Accepted 10 May 2005 Online 21 May 2005
[Fig. 1; symmetry code: (iii) $x, 1-y, z$]. In the anion, a crystallographic mirror plane passes through atom C6 perpendicular to the carboxylate group. As a result, the hydroxypyridyl group of the anion shows orientational disorder.

The cations and dianions of (I) are linked by hydrogen bonds (Table 2) to form a three-dimensional network.

Experimental

A mixture of cobalt(II) chloride hexahydrate $(0.238 \mathrm{~g}, 1 \mathrm{mmol})$, 6-hydroxypyridyl-3-carboxylic acid $(0.139 \mathrm{~g}, \quad 1 \mathrm{mmol})$, sodium hydroxide ($0.040 \mathrm{~g}, 1 \mathrm{mmol}$) and water (10 ml) were sealed in a 23 ml Teflon-lined stainless steel Parr bomb. The bomb was heated to 433 K for 2 d . It was then cooled to room temperature at $10 \mathrm{~K} \mathrm{~h}^{-1}$ to yield red crystals of (I).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)_{2}$
$M_{r}=443.23$
Monoclinic, $C 2 / \mathrm{m}$
$a=11.609$ (1) \AA
$b=9.754$ (1) A
$c=7.6157(8) \AA$
$\beta=91.448$ (2) ${ }^{\circ}$
$V=862.1$ (2) \AA^{3}
$Z=2$
$D_{x}=1.707 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation

Cell parameters from 1422 reflections
$\theta=2.7-27.4^{\circ}$
$\mu=1.07 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Plate, red
$0.34 \times 0.20 \times 0.08 \mathrm{~mm}$
Data collection
Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.499, T_{\text {max }}=0.920$
2296 measured reflections
968 independent reflections 956 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=27.4^{\circ}$
$h=-14 \rightarrow 15$
$k=-12 \rightarrow 12$
$l=-9 \rightarrow 8$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.053 P)^{2} \\
&+7.1943 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.50 \mathrm{e}^{-3}
\end{aligned}
$$

113 reflections
H atoms treated by a mixture of independent and constrained refinement

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 1$	0.85 (1)	1.83 (2)	2.659 (4)	168 (4)
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 1^{\text {i }}$	0.84 (1)	1.87 (1)	2.710 (5)	171 (5)
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 2^{\text {ii }}$	0.85 (1)	2.02 (3)	2.791 (8)	151 (4)
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 2^{\text {ii }}$	0.85 (1)	2.02 (3)	2.791 (8)	151 (4)
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 2^{\text {iii }}$	0.85 (1)	1.97 (1)	2.769 (9)	157 (2)
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 2{ }^{\text {iv }}$	0.85 (1)	1.97 (1)	2.769 (9)	157 (2)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{o} \cdots{ }^{\text {c }}{ }^{\text {v }}$	0.85	2.04	2.86 (1)	159

Symmetry codes: (i) $\frac{3}{2}-x, \frac{3}{2}-y, 1-z$; (ii) $x-1, y, z-1$; (iii) $2-x, 1-y, 1-z$; (iv) $2-x, y, 1-z$; (v) $\frac{5}{2}-x, \frac{3}{2}-y, 2-z$.

Atoms $\mathrm{C} 1-\mathrm{C} 5 / \mathrm{N} 1 / \mathrm{O} 2$ in the anion are disordered over two possible positions related by mirror symmetry; the $\mathrm{C}-\mathrm{C}$ distances were restrained to 1.39 (1) \AA, and the two $\mathrm{N}-\mathrm{C}$ distances were restrained to within $0.01 \AA$ of each other. Additionally, the ring was restrained to near planarity. Water H atoms were located in difference Fourier maps and were refined with a distance restraint of $\mathrm{O}-$ $\mathrm{H}=0.85$ (1) \AA. OH groups were allowed to rotate about the $\mathrm{C}-\mathrm{O}$ bond to fit the electron density, with $\mathrm{O}-\mathrm{H}$ constrained to $0.85 \AA$ and $\mathrm{C}-\mathrm{O}-\mathrm{H}=109.5^{\circ}$. Carbon-bound H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: atomic coordinates taken from the isostructural Zn analogue (Zhang et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (grant No. 29973059), Shenzhen University and the University of Malaya for supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Zhang, X.-L., Lu, Y.-J., Li, J.-Z. \& Ng, S. W. (2005). Acta Cryst. E61, m1063m1064.
Zhang, X.-L. \& Ng, S. W. (2005). Acta Cryst. E61, m1142-m1143.

